LV7

Pomiary składowych harmonicznych

Celem ćwiczenia jest zapoznanie z tworzeniem procedur przetwarzania danych w środowisku programistycznym LabVIEW na przykładzie analizy widma prądu odbiornika.

Zajęcia przewidziane są jako projektowe. Obejmują samodzielną analizę i modyfikację wirtualnego przyrządu do pomiaru przemiennych napięć i prądów w obwodach jednofazowych, używanego w ćwiczeniu LV5, w sposób pozwalający na analizę widma prądu odbiornika z wykorzystaniem elementów oferowanych przez środowisko LabVIEW.

1. Wprowadzenie

1.1 Analiza widma

Analiza sygnału w dziedzinie częstotliwości pozwala ocenić udział składowych harmonicznych w przebiegu badanym, którym może być np. napięcie i prąd odbiornika zasilanego z sieci energetycznej, wibracje, mowa ludzka itp. Sygnał okresowy wielkości x(t) można przedstawić w postaci szeregu Fouriera:

$$x(t) = X_0 + \sum_{k=1}^{\infty} X_k \sin(k\omega t + \varphi_k)$$
(1)

gdzie: X_0 jest składową stałą, X_m jest amplitudą k-tej harmonicznej o pulsacji $k\omega$ i fazie φ_k .

Powszechnie do sprawdzenia zawartości harmonicznych w sygnale używa się transformacji Fouriera, którą można traktować jako zastosowanie zespołu m=N/2 równolegle połączonych filtrów pasmowych nastrojonych na częstotliwość f(i) wynikającą z liczby próbek N i częstotliwości próbkowania f_s .

Analizę rozpoczyna się od przeprowadzenia próbkowania badanego przebiegu z częstotliwością próbkowania f_s w celu uformowania ciągu próbek x(n). Kolejną czynnością jest przeprowadzenie analizy FFT, która jest modyfikacją dyskretnej transformaty Fouriera pozwalającą na szybsze przeprowadzenie obliczeń [2]. Wartość składowych widma sygnału opisana jest wzorem:

$$X(i) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi n i/N}$$
(2)

gdzie:

X(i) – składowa widma,

x(n) – wartości chwilowe próbek wejściowych

N – liczba próbek ciągu wejściowego oraz liczba punktów częstotliwości w ciągu

wyjściowym DFT. ze względu na symetrie wyjśc

Ze względu na symetrię wyjściowych członów FFT, wartości wyjściowe FFT dla argumentów $i \ge N/2$ będą się powielać. Pozostałe wartości są lustrzanym odbiciem, co oznacza, że wartość wyjściowa FFT o indeksie *i* będzie miała taką samą amplitudę jak wartość o indeksie *N-i*. Jedynie pierwsze *N/2* wartości FFT niesie informację o widmie sygnału. Wartości częstotliwości dla kolejnych punktów FFT, oblicza się ze wzoru:

$$f(i) = \frac{if_s}{N} \tag{3}$$

Wartość dla i=1 tzn. f(1) jest rozdzielczością widma. Kolejne wartości wyjściowe FFT są obliczane dla częstotliwości będących iloczynem if(1).

W wyniku analizy uzyskuje się wykres z zestawem prążków reprezentujących składowe widma badanego sygnału. Obliczenia są poprawne tylko wówczas, gdy składowe widma są całkowitymi wielokrotnościami częstotliwości podstawowej harmonicznej. W innym przypadku następuje przeciek na wszystkie sąsiednie prążki widma [2].

1.2 Współczynnik zawartości harmonicznych

Jedną z częściej stosowanych miar odkształcenia przebiegu sygnału, tj. zawartości dodatkowych składowych w badanym sygnale jest współczynnik zawartości harmonicznych, oznaczany symbolem THD (*ang. Total Harmonic Distortion*). Obliczany jest jako procentowy stosunek wartości skutecznej sumy harmonicznych do wartości skutecznej składowej podstawowej (h_1) lub do wartości skutecznej całego sygnału (h_2).

$$h_1 = \frac{\sqrt{\sum_{n=2}^{\infty} U_{nsk}^2}}{U_1} 100\%$$
(4)

$$h_{2} = \frac{\sqrt{\sum_{n=2}^{\infty} U_{nsk}^{2}}}{\sqrt{\sum_{n=1}^{\infty} U_{nsk}^{2}}} 100\%$$
(5)

2. Podstawy pracy w środowisku LabVIEW

Aplikację tworzoną w środowisku LabVIEW (*ang. Laboratory Virtual Instrumentation Engineering Workbench*) nazywamy przyrządem wirtualnym. Rozszerzenie nazwy pliku przyrządu - vi pochodzi od skrótu nazwy angielskiej – *virtual instrument*. Aplikację tworzy się wykorzystując dwa główne okna [1,3].

Pierwsze okno to Panel przyrządu, stanowiący interfejs do współpracy z użytkownikiem. Na Panelu umieszcza się elementy, które można podzielić na zadajniki (*ang. controls*) i wskaźniki (*ang. indicators*). Zadajniki pozwalają na ustawianie wymaganych przez użytkownika wartości, wpisywania ścieżek do plików, konfigurowanie pracy programu itp. Wskaźniki służą do obserwowania pracy aplikacji i efektów analizy zebranych danych. Elementy do tworzenia interfejsu użytkownika dostępne są w oknie pomocniczym, które można wyświetlić wybierając w oknie Panelu opcję View/ Controls Palette.

Drugie okno to Diagram programu stanowiący logiczne połączenie ikon przedstawiających elementy umieszczone na Panelu z obiektami realizującymi funkcje matematyczne, tekstowe, komunikacyjne itd. Okno pomocnicze z elementami do tworzenia Diagramu otwiera się wybierając w oknie Diagramu opcję View/ Functions Palette.

Przełączanie pomiędzy oknem Panelu przyrządu i oknem Diagramu odbywa się z wykorzystaniem kombinacji **CTRL+E**.

W trakcie pracy nad tworzeniem aplikacji głównym narzędziem jest myszka. Wszystkie możliwe do wyboru działania w postaci symbolicznej zostały zestawione w oknie pomocniczym wywoływanym przez wybór opcji View/ Tools Palette. Funkcje kursorów niezbędnych do wykonania prac w ćwiczeniu podano poniżej.

+ - kursor pozwalający na przemieszczanie i zmianę rozmiarów obiektów.

- kursor pozwalający na wywoływanie akcji w zadajnikach (np. ustawianie pozycji suwaka, wciskanie przycisków, itp.).

🔌 - kursor używany do tworzenia połączeń pomiędzy obiektami na Diagramie.

- kursor do edycji tekstu w zadajnikach i wstawiania dodatkowych opisów na Panelu i Diagramie przyrządu.

Typ zmiennej na Diagramie oznaczany jest za pomocą kolorów, takich samych dla połączeń i obiektów. Można wyróżnić cztery typy zmiennych: całkowity (*ang. integer*, kolor niebieski), rzeczywisty (*ang. real*, kolor pomarańczowy), logiczny (*ang. boolean*, kolor zielony), tekstowy (*ang. string*, kolor fioletowy). Pogrubienie połączenia oznacza przekazywanie tablicy wartości.

Błędne połączenia sygnalizowane są linią czarną przerywaną. Można je usuwać automatycznie wykorzystując kombinację **CTRL+B** lub ręcznie, wskazując kursorem **i** naciskając klawisz **DELETE**.

3. Tworzenie aplikacji analizatora widma

3.1 Uruchomienie stanowiska i zapoznanie się z programem

Włączyć komputer i poczekać na uruchomienie systemu operacyjnego. Uruchomić środowisko LabView. W oknie Getting Started wybrać opcję Open/Browse.., przejść do katalogu C:/Laboratorium_ME_LabView/Labor_LV_7 i otworzyć plik przyrządu wirtualnego Lab_ME_LV_7pm.vi. Jest to używany w ćwiczeniu LV5 program Lab_ME_LV_5.vi z wyłączoną blokadą edycji.

3.2 Analiza Diagramu połączeń przyrządu wirtualnego

Przełączyć okno programu na Diagram. Przyciskiem **?** (**CTRL+H**) włączyć okno pomocy kontekstowej **Context Help**. Odszukać fragment Diagramu w którym przekazywane są tablice z wyliczonymi wartościami prądu i napięcia do wskaźnika pokazującego przebieg ich wartości chwilowych. W celu przełączenia pomiędzy wskaźnikiem na Panelu a odpowiadającą mu ikoną na Diagramie umieścić na wskaźniku kursor **!** i dwukrotnie kliknąć. Po automatycznym przełączeniu na okno Diagramu obiekt zostanie zaznaczony czarną przerywaną linią. Po dokonaniu analizy Diagramu zapytać prowadzącego, czy wybór obiektów do przerysowania jest prawidłowy. **Przerysować odpowiedni fragment Diagramu połączeń do protokołu.** Korzystając z okna pomocy kontekstowej opisać na przerysowanym fragmencie Diagramu wykorzystane w nim obiekty.

W celu uzyskania jednoznacznych wskazań na Panelu dla kolejno nastawianych parametrów analizy widma korzystne jest wykonanie programu w trybie jednorazowego pełnego cyklu. Ponieważ do podtrzymania ciągłości pracy aplikacji zastosowano strukturę WHILE, należy ją usunąć. Umieścić kursor in na krawędzi pętli WHILE. Do identyfikacji struktury wykorzystać pomoc kontekstową (CTRL+H). Umieszczenie na krawędzi struktury kursora skutkuje pojawieniem się w oknie pomocy informacji o wyszukiwanej strukturze. Po wskazaniu kliknąć prawym przyciskiem myszy. Z pojawiającego się menu kontekstowego wybrać opcję REMOVE WHILE LOOP. Po tej operacji na Panelu pozostaje jeszcze zadajnik do wyłączania programu - przycisk STOP. Należy go również usunąć. W tym celu zaznaczyć zadajnik kursorem i nacisnąć klawisz DELETE. Użyć kombinacji CTRL+B do wykasowania pozostałych po pętli i przycisku zbędnych połączeń.

Visible Items	Context Help	×				
Help	While Loop	^				
Examples						
Description and Tip						
Set Breakpoint						
Structures Palette						
🗸 Auto Grow	I O					
Replace with For Loop						
Replace with Timed Loop	Repeats the subdiagram inside it until the conditional terminal, an input					
Remove While Loop	terminal, receives a particular Boolean value. The Boolean value					
Add Shift Register	the conditional terminal and select Stop if True or Continue if True from the chortruit menu. You also can wire an error cluster to the					
🗸 Stop if True	conditional terminal, right-click the terminal, and select Stop on Error					
Continue if True	or Continue while Error from the shortcut menu. The While Loop					
	always executes at least once.					
	Detailed help	~				
	☞ & ? <	>:				

Przejść na okno Panelu (**CTRL+E**). Przełączyć kursor do postaci **•**. Zmodyfikować Panel przyrządu tak, aby wygospodarować na nim miejsce na trzy dodatkowe wskaźniki: widma sygnału, wartości 1, 3, 5-tej harmonicznej i współczynnika zawartości harmonicznych. W tym celu pomniejszyć wskaźnik graficzny przebiegów prądu (klikając na obiekt i przeciągając za "uchwyty" na oznaczonych linią przerywaną krawędziach), napięcia i mocy oraz przemieścić pozostałe elementy interfejsu. Wyłączyć prezentację opisu osi Y dla wskaźnika "Zebrane próbki za pomocą karty pomiarowej". W tym celu należy uruchomić menu kontekstowe dla tego obiektu. Umieścić na obiekcie kursor, kliknąć prawym klawiszem myszy i wybrać opcję PROPERTIES. W uruchomionym oknie należy wybrać zakładkę SCALES. W oknie wyboru osi do edycji zmienić opcję "Liczba próbek (X-Axis)" na "Wartość napięcia wejściowego karty pom. (Y-Axis)", odznaczyć opcję SHOW SCALE LABEL. Potwierdzić zmianę przyciskiem **OK**.

Minimum Maximum
Minimum Maximum
Minimum Maximum
Minimum Maximum
Maximum
iset
ltiplier
Major grid

Należy dążyć do sytuacji, aby około ¼ powierzchni Panelu zostało zwolnione dla nowych elementów. Przykładowe uporządkowanie pokazano poniżej.

3.3 Wydruk dokumentacji programu

Utworzyć na dysku twardym komputera pliki z dokumentacją wykorzystywanego w ćwiczeniu przyrządu wirtualnego. Pliki będą zawierać obraz Panelu oraz Diagramu i należy je zapisać do katalogu: C:/student/LCRRRR_nazwisko gdzie L oznacza literę identyfikującą grupę laboratoryjną, C oznacza numer zespołu w grupie, RRRR oznacza aktualny rok, nazwisko jest nazwiskiem osoby wykonującej sprawozdanie. Kolejność postępowania została opisana w instrukcji do ćwiczenia LV1.

Odszukać zapisane pliki na dysku i sprawdzić ich zawartość. Zanotować w protokole nazwę utworzonego katalogu i nazwy zapisanych w nim plików z opisem zawartości.

3.4 Wstawienie obiektu pozwalającego na analizę widma sygnału

Uruchomić pomoc kontekstową (**Ctrl+H**). Wstawić do Diagramu z zakładki Functions/ Signal Processing/ Spectral Analiysis/ obiekt **Auto Power Spectrum.vi**. W razie problemów z odnalezieniem wymaganego obiektu obserwować zmiany w oknie pomocy kontekstowej przy przenoszeniu kursora nad zawartością zakładki. Po odnalezieniu właściwego obiektu pomoc powinna pokazać obraz jak poniżej.

Context Help	×
Auto Power Spectrum.vi	^
Signal (V) Power Spectrum (V^2 rms)	
Computes the single-sided, scaled, auto power spectrum of a time-domain signal.	
Detailed help	~
æ 💩 ? < 🔉 🔊	:

Obiekt Auto Power Spectrum wymaga dołączenia dwóch zmiennych. Do pierwszego zacisku, oznaczonego jako Signal (V) należy dołączyć tablicę z uzyskanymi w trakcie pomiaru wartościami chwilowymi prądu. Dodatkowo na zacisk dt należy podać wartość okresu próbkowania z obiektu Getwaveform components dla połączenia przekazującego próbki przebiegu prądowego. Ponieważ na Diagramie obiekt ma tylko jeden zacisk wyjściowy, trzeba utworzyć drugi. W tym celu kursorem r chwycić za pojawiający się "manipulator" na dolnej krawędzi obiektu i przeciągnąć w dół tak aby otworzyło się dodatkowe pole. Zmienić kursor na i kliknąć na pole opisane attributes. Z pojawiającego się menu wybrać opcję dt, czyli przekazywanie przez zacisk przedziału czasu proporcjonalnego do okresu częstotliwości próbkowania. Poniżej pokazano fragment Diagramu z obiektem przed i po operacji zwiększenia liczby zacisków wejściowych.

Tak utworzony zacisk należy połączyć z opisanym w identyczny sposób zaciskiem obiektu Auto Power Spectrum. Połączenie pomiędzy wyjściem pętli FOR a obiektem Auto Power Spectrum po połączeniu zmienia się na linię przerywaną koloru czarnego. Powodem jest domyślne ustawienie struktury FOR, która automatycznie powoduje zestawienie tablicy z danych przekazywanych na krawędź struktury. W celu usunięcia powstałego problemu umieścić na wyjściu połączenia dt z pętli FOR kursor i z menu kontekstowego (prawy przycisk myszy) wybrać opcję DISABLE INDEXING.

Z zakładki Controls/ Graph/ wstawić na Panel przyrządu wskaźnik **Waveform Graph,** potrzebny do obserwacji widma sygnału badanego. Analogicznie jak dla wskaźnika "Zebrane próbki za pomocą karty pomiarowej" uruchomić zakładkę SCALE w oknie PROPERTIES dla wstawionego obiektu **Waveform Graph**. Dla osi "Time (X-Axis)" przeprowadzić konfigurację, w tym celu:

- odznaczyć opcję AUTOSCALE,
- w polu MAXIMUM wpisać: 300,
- w polu NAME wpisać: Częstotliwość.

-😭 Controls	🔍 Search		
Modern	•	Context Help	X
	abc 112 34 34 Fath 34 Bing* 1	Waveform Graphs: Wire data directly to waveform graph: Y Array Resulting Graph	^
	+😭 Graph	1D Single Plot	
₽、╵ጬ╵	Waveform Graph	2D Multiplot	
System		WDT (Waveform Data Type) includes timing info. Others default to 0 for \times_0 and 1 for $\Delta\times.$	
Classic Express		Combine timing information using a bundle node:	
Control Design		y array	
.NET & Active>	▼	See the example: Waveform Graph.vi	
Addons User Controls		₫ ₿ ?<	
Select a Control			

Przez dwukrotne kliknięcie na umieszczonym na Panelu wskaźniku przejść na jego ikonę na Diagramie. W oknie pomocy kontekstowej zaobserwować, jak powinno wyglądać

prawidłowe podłączenie obiektów przekazujących dane do wykreślenia. Do formatowania danych służy obiekt Boundle.vi, który tworzy element typu klaster – który można traktować jako zmienną łączącą w jeden obiekt zmienne różnych typów.

Wstawić do Diagramu obiekty:

• Functions/ Programming/ Cluster & Variant/ Bundle.vi

Context Help	×
Bundle	^
element 1 element n-1	
Assembles a cluster from individual elements.	
Detailed help	~
ē b ? <	

• Functions/ Programming/ Numeric/ Numeric Constant.vi

Ustawić wartość stałej na 0. W tym celu należy zmienić kursor na edycyjny i po kliknięciu na obiekt wpisać 0. Będzie to wartość x_0 do podania na obiekt Boundle.vi. Δx to wartość df z obiektu Auto Power Spectrum.vi, natomiast drugie wyjście tego obiektu – Power Spectrum (V^2rms) dołączyć do Boundle.vi do zacisku oznaczonego w pomocy dla wskaźnika jako y array. Wykonać połączenia wg informacji zawartej w oknie pomocy kontekstowej dla wskaźnika Waveform Graph.

Sprawdzenie działania wykonanej modernizacji:

- uruchomić układ pomiarowy według **procedury uruchamiania stanowiska pomiarowego** opisanej w punkcie 4, jako odbiornik dołączyć świetlówkę kompaktową,
- dokonać próbnego uruchomienia programu dla liczby próbek *N*=100, zapisać uzyskane widmo w sposób opisany w punkcie 4a.
- po pozytywnym zakończeniu próby wyłączyć układ pomiarowy według kolejności podanej w **procedurze uruchamiania stanowiska pomiarowego** opisanej w punkcie 4.

Zapisać na dysku Panel Przyrządu i Diagram programu. Zanotować w protokole nazwę pliku z obrazami.

3.5 Wstawienie obiektu pozwalającego na obliczenie współczynnika zawartości harmonicznych THD

Wstawić do Diagramu obiekty:

• z zakładki Functions/ Signal Processing/ Waveform Measurements/ obiekt Harmonic Distortion Analyzer.vi.

• z zakładki Functions/ Programming/ Waveform/ obiekt Build Waveform.vi

C	ontext Help	×
	Build Waveform	^
	waveform waveform waveform	
	Builds an analog waveform or modifies an existing waveform. If you do not wire the waveform input, the VI creates a new waveform based on the components you wire. If you wire the waveform input, the VI modifies the waveform based on the components you wire.	
	Detailed help	~
E	ē b ? <	

Ponieważ domyślnie obiekt wstawiany jest tylko z jednym zaciskiem wejścia oznaczonym jako Y, należy w analogicznie jak w punkcie 3.4 rozciągnąć obiekt w dół o jedno pole i z utworzonego zacisku attributes utworzyć zacisk dt. Dane do wyliczenia współczynnika THD najlepiej pobrać z obiektu Auto Power Spectrum.vi. W tym celu Zacisk Y należy połączyć z zaciskiem z Signal (V) oraz połączyć ze sobą zaciski obiektów oznaczone dt. Wyjście waveform połączyć z wejściem signal in obiektu Harmonic Distortion Analyser.vi. Ustalić liczbę analizowanych harmonicznych. W tym celu dołączyć do zacisku highest harmonic stałą numeryczną (zakładka Functions/ Programming/ Numeric/ Numeric Constant.vi) i wpisać, z użyciem kursora A, liczbę 5.

Utworzyć wskaźnik pokazujący zawartość harmonicznych w sygnale THD. W tym celu umieścić na zacisku THD kursor myszy, kliknąć prawym przyciskiem i z menu kontekstowego wybrać opcję Create/ Indicator. Po wstawieniu zostanie automatycznie nadana nazwa THD. Uwaga: w razie problemów z identyfikacją zacisku uruchomić pomoc kontekstową (CTRL+H) i przemieszczać kursor rad obiektem. W oknie pomocy będzie się wówczas pojawiać migający czarny kwadrat nad zaciskiem, nad którym aktualnie znajduje się kursor.

Utworzyć wskaźnik pokazujący amplitudy składowych widma badanego przebiegu. W tym celu umieścić na zacisku components level kursor myszy, kliknąć prawym przyciskiem i z menu kontekstowego wybrać opcję Create/ Indicator. Po wstawieniu wskaźnikowi zostanie automatycznie nadana nazwa components level. Kliknąć na nowo utworzonym obiekcie dwukrotnie, środowisko programistyczne automatycznie pokaże Panel Przyrządu z pozycją wskaźnika. Przemieścić obiekt w wybrane miejsce na pulpicie. Kursorem rozciągnąć tak, aby było możliwe wyświetlenie 6ciu cyfr z mnożnikiem i przecinkiem. Analogicznie postąpić ze wskaźnikiem THD.

Zapisać na dysku Panel Przyrządu i Diagram programu. Zanotować w protokole nazwę pliku z obrazami.

Przykładowy Panel przyrządu po umieszczeniu wszystkich dodatkowych wskaźników został przedstawiony poniżej.

4. Analiza widma i zawartości harmonicznych typowych odbiorników

Procedura uruchamiania stanowiska pomiarowego

Ze względu na bezpieczeństwo osób wykonujących pomiary oraz karty pomiarowej należy przestrzegać procedury uruchamiania i wyłączania stanowiska. Nie dopuszczać do sytuacji gdy zasilany jest obwód pomiarowy a nie jest zasilana karta pomiarowa (wyłączony komputer).

Bezpieczne wykonanie pomiaru powinno odbywać się w kolejności:

- połączenie obwodu pomiarowego (o ile wcześniej nie został już połączony) i podłączenie go do odpowiednich wejść karty pomiarowej,
- załączenie zasilania stanowiska,
- załączenie komputera i uruchomienie programu obsługi,
- podłączenie zasilania odbiornika w układzie pomiarowym,
- podłączenie obwodu pomiarowego do zasilania.

Wyłączenia stanowiska pomiarowego dokonujemy w kolejności odwrotnej pamiętając o konieczności wyłączenia obwodu pomiarowego przed wyłączeniem komputera.

4.1 Obciążenie w postaci nowoczesnego źródła światła

Podłączyć do układu pomiarowego świetlówkę kompaktową. Ustawić w zadajniku "liczba N próbek do obliczeń" wartość 100. Wpisać stałe układu kondycjonowania. Uruchomić program przyciskiem in , w trakcie pracy przyrządu wirtualnego jego wygląd zmienia się na . Odczekać, aż przycisk powróci ponownie do postaci . Uruchomić menu kontekstowe wskaźnika widma i wybrać opcję Export Simplified Image. Wybrać opcją Bitmap (BMP) i Save to file. Zapisać otrzymane widmo w utworzonym na początku zajęć katalogu, jako nazwę pliku wpisać swietlowka100. Zatwierdzić OK i zapisać Save.

W Tabeli 1 wpisać odczytane wartości 1, 3, 5-tej harmonicznej prądu (wskaźnik components level - komórki 1, 3 i 5) i współczynnika zniekształceń nieliniowych THD. Analizę widma powtórzyć dla wartości N zmienianych według Tabeli 1, każdorazowo zapisując wartości 1, 3 i 5-tej harmonicznej prądu i współczynnika zniekształceń nieliniowych. W trakcie pomiarów obserwować obraz widma. Dla każdego nastawionego N notować w Tabeli 1 zauważone dla poszczególnych harmonicznych zmiany (zniekształcenie, zmianę amplitudy i szerokości prążka). Ocenić, jaka liczba próbek N nie powoduje widocznej zmiany obserwowanego obrazu widma. Zanotować ją w protokole jako N_{opt} w Tabeli 2, dodatkowo pod pozycją "świetlówka kompaktowa" zapisać odpowiadające N_{opt} wartości: skutecznej prądu (obliczanej dla zadanej liczby próbek), 1, 3, 5-tej harmonicznej prądu i współczynnika zniekształceń nieliniowych THD. Zapisać obraz widma uznanego za optymalne na dysku, jako nazwę pliku wpisać **swietlowka**.

W sprawozdaniu obliczyć:

- rozdzielczość analizy widma wg wzoru (3) (częstotliwość dla pierwszego punktu FFT, tj. *i*=1, *f_s*=5kHz),
- stosunek częstotliwości harmonicznej podstawowej (przyjąć 50Hz) do rozdzielczości dla danego N,
- wartość skuteczną prądu odbiornika, wykorzystując wzór

$$I_{sk_o} = \sqrt{\frac{1}{3}(I_{1h}^2 + I_{3h}^2 + I_{5h}^2)},$$

gdzie I_k to odczytana z Panelu harmoniczna.

Wykreślić dla badanych zakresów N, na oddzielnych wykresach, przebiegi harmonicznych i współczynnika THD w zależności od wartości N. Dla N przyjąć skalę logarytmiczną.

We wnioskach ocenić wpływ wartości liczby próbek N na uzyskany obraz widma i współczynnik zawartości harmonicznych THD. Porównać wartości prądu obliczone z uzyskanego widma i odczytane bezpośrednio z Panelu. Przeanalizować, dla jakich wartości N uzyskane wyniki nie ulegają widocznej zmianie.

4.2 Obciążenie rezystancyjne

Podłączyć do układu pomiarowego żarówkę. Ustawić w zadajniku "liczba N próbek do obliczeń" wartość N_{opt} . Uruchomić program przyciskiem \swarrow , w trakcie pracy przyrządu wirtualnego jego wygląd zmienia się na \textcircled . Odczekać, aż przycisk powróci ponownie do postaci \bigodot . Zapisać według kolejności podanej w p. 4.1 otrzymane widmo, jako nazwę pliku wpisać **zarowka**. W Tabeli 2 wpisać odczytane z Panelu wirtualnego przyrządu wskazania wartości: skutecznej prądu (obliczanej dla zadanej liczby próbek) 1, 3, 5-tej harmonicznej prądu (wskaźnik components level - komórki 1, 3 i 5) i współczynnika zniekształceń nieliniowych THD.

4.3 Obciążenie pojemnościowe

Podłączyć do układu pomiarowego kondensator. Ustawić w zadajniku "liczba N próbek do obliczeń" wartość N_{opt} . Uruchomić program przyciskiem \checkmark , w trakcie pracy przyrządu wirtualnego jego wygląd zmienia się na \clubsuit . Odczekać, aż przycisk powróci ponownie do postaci \checkmark . Zapisać według kolejności podanej w p. 4.1 otrzymane widmo, jako nazwę pliku wpisać kondensator. W Tabeli 2 wpisać odczytane z Panelu wirtualnego przyrządu wskazania wartości: skutecznej prądu (obliczanej dla zadanej liczby próbek) 1, 3, 5-tej

Ćwiczenie LV_7

harmonicznej prądu (wskaźnik components level - komórki 1, 3 i 5) i współczynnika zniekształceń nieliniowych THD.

4.4 Obciążenie rezystancyjno-indukcyjne

Podłączyć do układu pomiarowego nieobciążony transformator. Ustawić w zadajniku "liczba N próbek do obliczeń" wartość N_{opt} . Uruchomić program przyciskiem \checkmark , w trakcie pracy przyrządu wirtualnego jego wygląd zmienia się na \clubsuit . Odczekać, aż przycisk powróci ponownie do postaci \diamondsuit . Zapisać według kolejności podanej w p. 4.1 otrzymane widmo, jako nazwę pliku wpisać **transformator**. W Tabeli 2 wpisać odczytane z Panelu wirtualnego przyrządu wskazania wartości: skutecznej prądu (obliczanej dla zadanej liczby próbek) 1, 3, 5-tej harmonicznej prądu (wskaźnik components level - komórki 1, 3 i 5) i współczynnika zniekształceń nieliniowych THD.

4.5 Obciążenie w postaci zestawu komputerowego

Wyłączyć system pomiarowy, podłączyć wtyczkę komputera do gniazdka dołączonego do obwodu pomiarowego. Uruchomić system pomiarowy. Po uruchomieniu komputera uruchomić program Lab_ME_LV_7pm.vi. Wpisać stałe układu kondycjonowania.

Ustawić w zadajniku "liczba N próbek do obliczeń" wartość N_{opt} . Uruchomić program przyciskiem P, w trakcie pracy przyrządu wirtualnego jego wygląd zmienia się na P. Odczekać, aż przycisk powróci ponownie do postaci \oiint{P} . Zapisać według kolejności podanej w p. 4.1 otrzymane widmo, jako nazwę pliku wpisać komputer. W Tabeli 2 wpisać odczytane z Panelu wirtualnego przyrządu wskazania wartości: skutecznej prądu (obliczanej dla zadanej liczby próbek) 1, 3, 5-tej harmonicznej prądu (wskaźnik components level - komórki 1, 3 i 5) i współczynnika zniekształceń nieliniowych THD.

5. Wykonanie sprawozdania

W sprawozdaniu należy przedstawić kolejno dla każdego punktu uzyskane rezultaty w postaci: zapisanych plików graficznych, tabelek z wynikami badań i obliczeń, wzory użyte do obliczeń, wykresy, wnioski itp.

Obliczyć wartość skuteczną prądu dla zanotowanych harmonicznych (używając wzoru podanego w p.4.1). Porównać zanotowaną w Tabeli 2 wartość skuteczną prądu z obliczoną i ocenić, jaki jest udział 1, 3 i 5tej harmonicznej w wartości skutecznej prądu odbiornika podawanej przez program przyrządu wirtualnego.

We wnioskach, korzystając z Tabeli 2 i zapisanych obrazów widma dla poszczególnych odbiorników, porównać zawartość pierwszej, trzeciej i piątej harmonicznej oraz współczynnika THD.

Podsumować wyniki badań, określić który z odbiorników charakteryzował się największym zniekształceniem pobieranego prądu a który najmniejszym, jaka liczba próbek dawała optymalny obraz widma, jaki wpływ ma pobierana liczba próbek na wartość podawanego przez program współczynnika THD.

Literatura

[1] Chruściel M., *LabVIEW w praktyce*, BTC, Legionowo 2008.

- [2] Richard G. Lyons, *Wprowadzenie do cyfrowego przetwarzania sygnałów*, Wydawnictwa Komunikacji i Łączności, Warszawa 2000.
- [3] Świsulski D., Komputerowa technika pomiarowa. Oprogramowanie wirtualnych przyrządów pomiarowych w LabVIEW, Agenda Wydawnicza PAK-u, Warszawa 2005.

Politechnika Lubelska, Katedra Automatyki i Metrologii

Tab	ela 1						
N	I_{1h}	I _{3h}	I 5h	THD	Zmiany w widmie	<i>f</i> (1)	50Hz/ <i>f</i> (1)
-	Α	Α	Α	-		Hz	-
100							
110							
120							
130							
140							
150							
160							
170							
180							
190							
200							
220							
240							
260							
280							
300							
320							
340							
360							
380							
400							
800							
1200							
1600							
2000							
4000							
8000							

Politechnika Lubelska, Katedra Automatyki i Metrologii

Tabela 2	2
----------	---

	N _{opt} =								
Odbiornik	I _{1h}	I _{3h}	I 5h	THD	l _{sk}	I _{sk_o}			
	А	А	А	-	А	А			
Świetlówka kompaktowa									
Transformator									
Kondensator									
Żarówka									
Komputer									