INSTRUKCJA OBSŁUGI

BM857
BM859CF
1) BEZPIECZEŃSTWO
Poniższa instrukcja obsługi zawiera informacje i ostrzeżenia, których należy przestrzegać, aby móc bezpiecznie posługiwać się miernikiem i obsługiwać go w bezpiecznych warunkach. Miernik przeznaczony jest do użytku wewnątrz pomieszczeń.

BM857:
- V/R : Kategoria III 1000V AC / DC.
- A : Kategoria III 500V AC i 300V DC.
- mA/µA : Kategoria III 500V AC i 300V DC.

BM859CF:
- V/R : Kategoria III 1000V AC / DC.
- A : Kategoria III 1000V AC / DC.
- mA/µA : Kategoria III 600V AC i 300V DC.

ZGODNIE Z KATEGORIAMI PRZEPIĘCIOWYMI IEC61010

KATEGORIA PRZEPIĘCIOWA II
Sprzęt KATEGORII PRZEPIĘCIOWEJ II to urządzenia stacjonarne zasilane z sieci energetycznej.
Dotyczy np.: urządzeń domowych, biurowych i laboratoryjnych

KATEGORIA PRZEPIĘCIOWA III
Sprzęt KATEGORII PRZEPIĘCIOWEJ III jest na stałe przyłączony do sieci.
Dotyczy np.: przełączników będących elementem instalacji oraz niektórych urządzeń przemysłowych na stałe przyłączonych do instalacji.

KATEGORIA PRZEPIĘCIOWA IV
Sprzęt KATEGORII PRZEPIĘCIOWEJ IV jest używany u źródeł instalacji.
Dotyczy np.: liczników energii i zabezpieczeń nadprądowych.

TERMINY STOSOWANE W INSTRUKCJI

OSTRZEŻENIE określa warunki i działania, które mogą spowodować poważny uraz lub nawet śmierć użytkownika.

UWAGA określa warunki i działania, które mogą spowodować zniszczenie lub błędna pracę miernika.
OSTRZEŻENIE

UWAGA
Przed zmianą zakresów pomiarowych należy zawsze odłączać przewody od punktów pomiarowych. W trybie ręcznej zmiany zakresów jeżeli nie znamy przybliżonej wartości należy zawsze najpierw ustawić największy zakres pomiarowy.

MIĘDZYNARODOWE SYMBOLE ELEKTRYczNE
⚠️ UWAGA! Przeczytaj wyjaśnienie w instrukcji obsługi
⚠️ UWAGA! Niebezpieczne napięcie – ryzyko porażenia
└┘ Uziemienie
رحم Podwójna lub wzmocniona izolacja
≡ Bezpiecznik
≈ Prąd przemienny (AC)
— — Prąd stały (DC)

2) Dyrektywa CENELEC
Miernik spełnia dyrektywę CENELEC 73/23/EEC i dyrektywę kompatybilności 89/336/EE.
3) OPIS WYROBU
Płyta czołowa

1) Wyświetlacz LCD 5 4/5 cyfry (500 000)

2) Przyciski funkcyjne

3) Przełącznik obrotowy zasilania i zmiany zakresów

4) Gniazdo wejściowe pomiaru prądu 10A (+) (20A przez 30s) i temperatury T₂

5) Gniazdo wejściowe (+) wszystkich funkcji pomiarowych oprócz prądu (μA, mA, A) i temperatury T₂

6) Gniazdo wejściowe (-) (Masa) wszystkich funkcji pomiarowych oprócz temperatury T₂

7) Gniazdo wejściowe (+) zakresów μA, mA oraz T₂
Odczyt wartości średniej skalibrowany na wartość skuteczną (RMS)
Termin wartość skuteczna (RMS) określa wartość efektywną lub poziom sygnału DC odpowiadający mierzonej wartości AC. Większość mierników mierzy wartość średnią ale wskazania są skalibrowane na wartość skuteczną przebiegu AC. This technique is to obtain the average value by rectifying and filtering the AC signal. Przy pomiarze czystego przebiegu sinusoidalnego technika ta jest szybka, dokładna i tania. Jednak przy pomiarze przebiegów niesinusoidalnych sposób ten będzie wprowadzał błędy wynikające z różnych współczynników szczytu przebiegów prostokątnych, pilokształtnych, itd.

True RMS – Rzeczywista Wartość Skuteczna
True RMS jest terminem określającym zdolność miernika do pomiaru rzeczywistej wartości skutecznej przebiegu niezależnie od jego kształtu, np: prostokątnego, pilokształtnego, trójkątnego, odkształconej sinusoidy, itd. Dodatkowo znaczący udział w przebiegu przemiennym może mieć składowa stała. Dobrym przykładem jest dwupołówkowo wyprostowany przebieg sinusoidalny, dla którego miernik True RMS poda wartość tylko składowej AC stanowiącej jedynie 43.6% ogólnej wartości rzeczywistej DC+AC tego przebiegu.

DC+AC True RMS
DC+AC True RMS jest terminem, który określa pomiar dokładnie odpowiadający całkowitej skutecznej wartości RMS niezależnie od kształtu fali i udziału składowej stałej. Wyraża się on wzorem $\sqrt{DC^2 + (AC\,\text{rms})^2}$. Dzięki pomiarowi DC+AC True RMS można dokładnie zmierzyć wartość napięcia dowolnego przebiegu, np.: prostokątnego, pilokształtnego, trójkątnego, ciąg impulsów, pojedyncze impulsy jak również przebiegi zniekształcone z zawartością napięć stałych i harmonicznych. Składowe te mogą powodować:
1) Przegrzewanie przewodów neutralnych (150Hz), transformerów, generatorów i silników oraz ich szybsze zużycie w stosunku do nominalnego okresu pracy
2) Zniszczenia obwodów lub przedwczesne włączanie się zabezpieczeń
3) Przepalenie bezpieczników
4) Wibrację szyn zbiorczych, magistral danych i paneli.

Szerokość pasma AC
Szerokość pasma AC miernika jest zakresem częstotliwości, w którym pomiary napięcia przemiennego są dokonywane z określoną dokładnością. Miernik nie może dokładnie zmierzyć wartości napięcia przemiennego o częstotliwości przewyższającej zakres pasma pomiarowego. W rzeczywistości przebiegi złożone, zniekształcone i szumy zawierają dużo większe spektrum częstotliwości niż ich przebiegi podstawowe.
NMRR (współczynnik tłumienia zakłóceń)
NMRR jest zdolnością miernika do tłumienia niepożądanych zakłóceń AC, które mogą powodować niedokładności w pomiarach DC. NMRR jest typowo wyrażany w decybelach (dB). Seria ta ma NMRR > 60dB dla 50 i 60Hz. Oznacza to, że wpływ zakłóceń AC przy pomiarach DC jest redukowany 1000 krotnie.

CMRR (współczynnik tłumienia napięć wspólnych)
Napięcie wspólne jest napięciem pojawiającym się na gniazdach wejściowych zarówno COM jak i VOLTAGE w odniesieniu do uziemienia. CMRR jest zdolnością miernika do tłumienia efektu napięć wspólnych, który może powodować miganie cyfr lub zerowanie przy pomiarach napięciowych. Ta seria posiada CMRR > 90dB na DC do 60Hz na ACV oraz >120dB na DC, 50 i 60Hz na DCV. Jeżeli ani NMRR ani CMRR nie są określone wskazania miernika będą niepewne.

Linijka analogowa (bargraf)
Linijka analogowa zapewnia wizualną prezentację wyniku pomiaru tak jak w tradycyjnych, analogowych miernikach wskazówkowych. Linijka analogowa jest szczególnie przydatna przy wykrywaniu przerw w połączeniach, określaniu zakłóceń pracy potencjometrów i wskazywaniu impulsów sygnałów podczas regulacji. Bargraf nie pracuje w trybach pomiaru napięcia i prądu AC+DC True RMS.

4) POMIARY
Napięcie AC, DC, DC+AC, ~ Hz Częstotliwość sieci
Na zakresie napięcia AC naciskanie przycisku SELECT powoduje cykliczne przełączanie pomiędzy AC i dBm. Na zakresie DC naciskanie SELECT przełącza pomiędzy DC+AC i DC. Na zakresie mV przełączamy się pomiędzy DC, AC lub DC+AC. Nowe ustawienia zostaną zapisane w pamięci nieużywanej miernika. Na zakresie DCV i DCMV każde naciśnięcie przycisku 500 000 powoduje cykliczne przełączanie pomiędzy trybami 4-4/5 cyfry a 5-4/5 cyfry. Na zakresach napięciowych lub prądowych naciśnięcie przycisku ~ Hz bezpośrednio uaktywnia funkcję Pomiaru Częstotliwości Sieci.

Uwaga: po naciśnięciu przycisku SELECT i włączeniu zakresu dBm na około 1 sekundę pokazana zostanie domyślna impedancja odniesienia 600Ω, a następnie właściwe odczyty wartości pomiarów dBm & Hz. Naciskając wiałokrotnie przycisk dBm-Ω (RANGE) można dokonać wyboru odpowiedniej impedancji obciążenia: 4, 8, 16, 32, 50, 75, 93, 110, 125, 135, 150, 200, 250, 300, 500, 600, 800, 900, 1000, lub 1200Ω. Nowa wartość impedancji będzie wyświetlena jako domyślna impedancja odniesienia.
UWAGA: Czulosc wejściowa funkcji Pomiaru Częstotliwości Sieci zmienia się automatycznie z zakresami napięcia i prądu (zakres mV ma największą czulość a 1000V najmniejszą). Zaleca się najpierw dokonać pomiaru napięcia (lub prądu) a następnie uaktywnić funkcję Hz dzięki czemu automatycznie zostanie wybrany właściwy poziom wyzwalań układu wejściowego. Po przełączeniu z zakresu napięciowego przyciskiem RANGE można ręcznie wybrać odpowiedni poziom czulosci wejściowej. Wskaznik linijki analogowej pokaże wybrany poziom wejściowy wyzwalań 1, 2, 3 lub 4. Jeżeli pomiar częstotliwości jest niestabilny należy wybrać mniejszą czulosc redukując w ten sposób wpływ szumu elektromagnetycznego. W przypadku gdy miernik pokazuje 0 należy zwiększyć czulosc wejściową.
Pomiary Częstotliwości Przebiegów Logicznych i Wypełnienia %.

Naciśnięcie przycisku SELECT powoduje przełączenie pomiędzy trybami Hz i % (wypełnienie). Nowe ustawienie zostaną zapisane jako domyślne w nieulotnej pamięci miernika. Naciśnięcie przycisku 500000 powoduje przełączenie pomiędzy odczytem 5-cio i 6-cio cyfrowym Hz.

UWAGA: W przeciwieństwie do funkcji Pomiarów Częstotliwości Sieci opisanej poprzednio układy wejściowe są ustawione na jeden, najwyższy poziom czułości wejściowej typowy dla pomiarów przebiegów cyfrowych.
T1-T2 Dwukanałowy Pomiar Temperatury (tylko BM859CF)
Naciśnięcie przycisku SELECT powoduje przełączenie pomiędzy trybami °C i °F. Nowe ustawienie zostaną zapisane jako domyślne w nieulotnej pamięci miernika. Naciśnięcie przycisku T1-T2 (RANGE) powoduje przełączenie pomiędzy odczytem T1, T2 i T1-T2.

UWAGA: Należy zwrócić uwagę na prawidłowe włożenie wtyczki bananowej sondy temperatury typu K (Bkp60 będącej na wyposażeniu) zgodnie z polaryzacją + - . Pomiar dwukanałowy wymaga stosowania dwóch sond. Można w tym celu użyć adaptora Bkb32 (zakup opcjonalny) banan (M) – typ K (Ż) i zastosować standardową sondę z wtykiem typu K.
Ω Rezystancja i — Ciągłość obwodu
Naciśnięcie przycisku SELECT powoduje przełączenie pomiędzy trybami Ω i —. Nowe ustawienie zostaną zapisane jako domyślne w nieulotnej pamięci miernika. Funkcja pomiaru ciągłości bardzo przydaje się przy sprawdzaniu przełączników i połączeń kabli. Ciągły sygnał brzęczyka oznacza, ciągłość obwodu.

UWAGA: Próba pomiaru rezystancji lub ciągłości w obwodach z podłączonym zasilaniem da błędne pomiary, a poza tym może zakończyć się zniszczeniem miernika. Aby uzyskać dokładny pomiar, w większości przypadków, mierzony element należy wymontować z obwodu.
Pojemność, Test Diod
Naciśnięcie przycisku SELECT powoduje przełączenie pomiędzy trybami -II- i +. Nowe ustawienie zostaną zapisane jako domyślnie w nieulotnej pamięci miernika.

UWAGA
Przed pomiarem zawsze należy rozładować kondensator. Kondensatory o dużej pojemności należy rozładowywać przez odpowiedni rezystor.

UWAGA: Napięcie przewodzenia standardowej diody krzemowej zawiera się pomiędzy 0.400V a 0.900V. Wyższa wartość wskazuje na niesprawność diody. Zeroigy odczyt oznacza zwarcie wewnętrzne diody. OL oznacza brak przewodzenia. Test diody w kierunku zaporowym jest pozytywny jeżeli wyświetlacz pokaże OL. Każde inne wskazanie jest nieprawidłowe i oznacza, że dioda jest niesprawna.
Funkcje pomiaru prądu μA, mA i pętli sterowania %4-20mA w automatycie
Włoż czerwony przewód pomiarowy do odpowiedniego gniazda μA/mA lub A. Naciśnięcie przycisku SELECT powoduje przełączenie pomiędzy trybami DC, AC lub DC+AC. Nowe ustawienie zostaną zapisane jako domyślnie w nieulotnej pamięci miernika. Naciśnięcie i przytrzymanie przez 1 sekundę przycisku %4-20mA (~Hz) na zakresie DC mA powoduje przejście w tryb pomiaru % pętli pradowej (4mA=0%, 20mA=100%). Wyświetlacz LCD pokazuje wartość % a linijka analogowa równolegle wartość prądu w mA. Wysoka rozdzielczość 0.01% umożliwia pomiar oraz kalibrację pętli.

OSTRZEZENIE: Przy pomiarach w obwodach trójfazowych należy zwrócić szczególną uwagę na napięcie międzyfazowe, które jest znacznie wyższe od napięcia fazowego. Aby nie przekroczyć nominalnego napięcia bezpiecznika znajdującego się wewnątrz miernika, należy zawsze brać pod uwagę napięcie międzyfazowe.

Transmisja do komputera za pomocą złącza RS232C
Na tylnie ściance miernika posiada izolowany galwanicznie, optyczny port do transmisji danych i komunikacji z PC. Połączenie z komputerem realizowane jest za pomocą kabla BC85X z adaptorem optycznym oraz oprogramowania BS85X, tworzących razem zestaw BR85X. Interfejs graficzny zawiera wyświetlacz cyfrowy, analogowy, komparator i wizualizację graficzną pomiarów. Szczegóły znajdują się w pliku README oprogramowania.
Tryb RECORD MAX/MIN
Naciśnięcie przycisku REC aktywuje tryb zapisu MAX/MIN. Na wyświetlaczu pojawia się symbole \mathbf{R} i $\mathbf{MAX~MIN}$. Miernik wydaje sygnał dźwiękowy za każdym razem kiedy nowa wartość minimalna lub maksymalna zostanie zarejestrowana. Naciskanie przycisku REC umożliwia cykliczne przełączanie wyświetlania zapisanych wartości maksymalnych MAX, minimalnych MIN oraz różnicy wartości maksymalnej i minimalnej MAX-MIN. W trybie tym funkcja automatycznego wyłączenia zasilania (APO) jest wyłączona. Naciśnięcie i przytrzymanie przycisku REC przez ponad 1 sekundę powoduje opuszczenie trybu zapisu MAX/MIN.

Tryb rejestracji krótkich impulsów CREST
Naciśnięcie przycisku CREST aktywuje tryb wyłapywania krótkich impulsów napięciowych lub prądowych o czasie trwania nawet 0.8ms. Funkcja CREST jest dostępna na zakresach DC, AC, DC+AC pomiaru prądu lub napięcia. Na wyświetlaczu pojawia się symbole \mathbf{C} i \mathbf{MAX}. Miernik wydaje sygnał dźwiękowy za każdym razem kiedy nowa wartość minimalna lub maksymalna zostanie zarejestrowana. Naciskanie przycisku CREST umożliwia cykliczne przełączanie wyświetlania zapisanych wartości maksymalnych MAX, minimalnych MIN oraz różnicy wartości maksymalnej i minimalnej MAX-MIN. W trybie tym funkcja automatycznego wyłączenia zasilania (APO) jest wyłączona. Naciśnięcie i przytrzymanie przycisku CREST przez ponad 1 sekundę powoduje opuszczenie trybu zapisu MAX/MIN.

Tryb Pomiarów Względnych Δ
Naciśnięcie przycisku Δ powoduje zapisanie aktualnej wartości jako wielkości odniesienia. Odczyt jest różnicą zapamiętaną wartości i bieżącego pomiaru wielkości mierzonej. W trybie tym można również wykorzystać funkcję RECORD MAX/MIN. Ponowne naciśnięcie przycisku Δ powoduje opuszczenie trybu Pomiaru Względnego.

Tryb wysokiej rozdzielczości 500000
Na zakresach napięciowych i pomiarze częstotliwości naciskanie przycisku 500000 umożliwia cykliczne przełączanie pomiędzy szybkim trybem $4 \frac{4}{5}$ cyfry (50000) a trybem wysokiej rozdzielczości $5 \frac{4}{5}$ cyfry (500000).

Podświetlenie wyświetlacz
Naciśnięcie przycisku SELECT przez ponad 1 sekundę powoduje włączenie lub wyłączenie podświetlenia. Po 30s podświetlenie jest automatycznie wyłączane.
Ręczna lub automatyczna zmiana zakresów pomiarowych
Naciśnięcie przycisku RANGE aktywuje tryb ręcznej zmiany zakresów pomiarowych, miernik pozostaje na aktualnym zakresie, a z wyświetlacz znika symbol \textit{AUTO}.
Przyciskiem RANGE możemy zmieniać zakresy pomiarowe. Naciśnięcie i przytrzymanie przycisku przez ponad 1 sekundę powoduje powrót do trybu automatycznej zmiany zakresów pomiarowych.
Uwaga: Ręczna zmiana zakresów jest niedostępna przy pomiarze częstotliwości Hz.

\textbf{Hold}\downarrow
Funkcja hold umożliwia „zamrożenie” wyniku pomiaru na wyświetlaczu.
Przyciskiem \textbf{Hold}\downarrow włączamy i wyłączamy tę funkcję.

Wyłączanie tonów klawiatury
Aby wyłączyć ton klawiatury towarzyszący każdemu naciśnięciu przycisku należy podczas włączania miernika nacisnąć przycisk \sim Hz. Sygnalizacja ciągłości i ostrzeżenie przed nieprawidłowym włożeniem przewodów do gniazda wejściowych pozostają nadal aktywne.

\textbf{Inteligentne Automatyczne Wyłączanie Zasilania (APO)}
Funkcja ta służy wydłużeniu żywotności baterii zasilającej i powoduje wyłączanie zasilania miernika po około 17 min braku aktywności. Aktywność rozumiana jest jako:
1) Operowanie przełącznikiem obrotowym lub przyciskami funkcjonalnymi
2) Wartość pomiarów powyżej 10% zakresu pomiarowego lub odczyt różny od OL Ω.
Innymi słowy, miernik w sposób inteligentny uniknie autowyłączenia kiedy będzie pracował w normalnym trybie pomiarowym. Aby powrócić do normalnego trybu pomiarowego należy nacisnąć przycisk SELECT albo ustawić przełącznik obrotowy w pozycję OFF a następnie ponownie wybrać żądaną zakres pomiarowy. Gdy miernik nie jest używany należy zawsze ustawić przełącznik obrotowy w pozycji OFF.

Wyłączanie funkcji APO
Aby wyłączyć funkcję należy podczas włączania miernika nacisnąć przycisk RANGE.

5) \textbf{OBSŁUGA}
\textbf{OSTRZEŻENIE}: Aby uniknąć porażenia prądem, przed otwarciem miernika należy zawsze wyjąć przewody pomiarowe z gniazda wejściowych i ustawić przełącznik obrotowy w pozycję OFF. Nie wolno przeprowadzać pomiarów przy otwartej obudowie. Bezpieczeństwo należy wymieniać wyłącznie na tego samego typu.
Rozwiązywanie problemów
Jeżeli miernik nie działa prawidłowo należy sprawdzić stan baterii, bezpieczników, przewodów pomiarowych, itd. Jeżeli wszystko jest w porządku należy sprawdzić czy zachowaliśmy procedurę opisaną w instrukcji. Uszkodzenie na zakresie pomiaru napięcia będące następstwem pojawienia się na wejściu impulsu o bardzo dużej wartości oznacza, że spaleniu uległy specjalne rezystory szeregowe chroniące zarówno miernik jak i użytkownika. Stan rozwarcia uniemożliwi korzystanie ze wszystkich funkcji pomiarowych używających tych gniazd. Miernik należy przekazać sprzedawcy w celu naprawy uszkodzenia.

Wymiana baterii i bezpieczników
Bateria: standardowa 9V bateria (NEDA1604, JIS006P, IEC6F22) lub alkaliczna (NEDA1604A, JIS6AM6, IEC6LF22)
Bezpiecznik FS1 (dla gniazd μA/mA)
 BM857: 500V, 0.63A, IR 100kA, szybki bezpiecznik typu F
 BM859CF: 600V, 1A, IR 100kA, szybki bezpiecznik typu F
Bezpiecznik FS2 (dla gniazd A)
 BM857: 500V, 12.5A, IR 10kA, szybki bezpiecznik typu F
 BM859CF: 1000V, 15A, IR 10kA, szybki bezpiecznik typu F
Odkręć wkręty mocujące z tyłu obudowy i zdejmij pokrywę zaczynając od strony gniazd pomiarowych, a następnie uwalniając ją z zaczepów w górnej części obudowy. Wymień baterię lub bezpiecznik(i). Przed skręceniem obudowy upewnij się, że uszczelka jest na właściwym miejscu a górne zaczepy są zatrześnięte.
Konserwacja i przechowywanie
Okresowo można przecenić obudowę miękką szmatką zwilżoną łagodnym detergentem. Nie używać rozpuszczalników. Jeżeli miernik nie będzie używany przez ponad 60 dni należy wyjąć z niego baterię.

6) DANE TECHNICZNE

Wyświetlacze: 4-4/5 cyfry (50 000) przełączany na 5-4/5 cyfry (500 000) na zakresach DCV oraz dodatkowo 6 cyfr (999 999) na częstotliwości.

Polaryzacja: Automatyczna

Próbkowanie: 4-4/5 cyfry: 5x/s nominalnie,
5-4/5 cyfry: 1.25x/s nominalnie,
43 segmentowa linijka analogowa (bargraf): 60x/s max.

Sygnalizacja słabej baterii: poniżej napięcia ok. 7V

Temperatura pracy: 0°C do 45°C

Wilgotność względna: maksymalnie 80% dla 31°C spadająca liniowo do 50% (50°C)

Kategoria środowiskowa: 2

Temperatura przechowywania: -20°C do 60°C < 80% w.w. względnej (bez baterii)

Zasilanie: bateria alkaliczna NEDA1604A, JIS6AM6 lub IEC6LF22

Pobór prądu: ok. 5mA

Autowyłączenie: po 4.5 minutach bezczynności, pobór prądu 20µA

Wymiary: 186mm x 87mm x 35.5mm; z holsterem 198mm x 97mm x 55mm

Waga: 390g; 500g z holsterem

BM857 V/R : Kategoria III 1000V AC / DC.
A : Kategoria III 500V AC i 300V DC.
mA/µA : Kategoria III 500V AC i 300V DC.

BM859CF V/R : Kategoria III 1000V AC / DC.
A : Kategoria III 1000V AC / DC.
mA/µA : Kategoria III 600V AC i 300V DC.

Pomiary w polu 3V/m: zakresy pojemności : dokładność nieokreślona
pozostałe zakresy: całkowita dokładność = dokładność danego zakresu + 100 cyfr
Pomiary w polu powyżej 3V/m: dokładność nieokreślona
Zabezpieczenia:
\[\mu A + mA : 0.63A/500V, IR 100kA,\] bezpieczenik typu F (szybki) w BM857,
\[1A/600V, IR 100kA,\] bezpieczenik typu F (szybki) w BM859CF;
\[A : 12.5A/500V, IR 10kA,\] bezpieczenik typu F (szybki) w BM857,
\[15A/600V, IR 10kA,\] bezpieczenik typu F (szybki) w BM859CF;
\[V : 1050V_{rms}, 1450V_{syczyl}\]
\[mV, \Omega \ i \ inne : 600V DC/AC_{rms} w BM857,\]
\[1050V_{rms}, 1450V_{syczyl} w BM859CF.\]

Zabezpieczenie przepięciowe: 8kV (1.2/50µs SURGE)

Akcesoria: Para przewodów pomiarowych, osłona ochronna (holster), bateria (w mierniku), instrukcja obsługi, sonda temperatury Bkp60 (tylko BM859CF)

Akcesoria dodatkowe: Interfejs do PC – Kit BR85X (BC85X RS232 przewód z adaptorem optycznym + dyskietki z oprogramowaniem BS85X), adapter Bkp32

Funkcje specjalne: Record MAX, MIN, MAX-MIN; Crest (pomiar b. krótkich impulsów) MAX, MIN, MAX-MIN; pomiar względný Rel/Δ, tryb wysokiej rozdzielczości 500 000, podświetlenie wyświetlacza, pomiar dBm, różnicy temperatur T1-T2 (tylko BM859CF), pętli prądowej %4-20mА, skuteczny filtr sieciowy na wejściu miernika, Data Hold – zatrzymanie wyniku pomiaru na wyświetlaczu, InErr – ostrzeganie wejściowe.

PARAMETRY ELEKTRYCZNE

Dokładność: ±(% wartości wskazania + liczba cyfr) jeśli nie jest inaczej określona, dla temperatury 23°C ±5°C i wilgotności względnej poniżej 75%.

Dokładność pomiaru wartości rzeczywistej skutecznej napięcia i prądu podana jest w zakresie od 5% do 100% zakresu pomiarowego (jeśli nie jest inaczej określona).

Maksymalny współczynnik kształtu < 5:1 dla całego zakresu i < 10:1 do polowy zakresu, dla określonego pasma składowych niesinusoidalnych.

Napięcie stałe DC V

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>BM859CF</th>
<th>BM857</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.00mV, 5.0000V, 50.000V</td>
<td>0.02%+2c</td>
<td>0.03%+2c</td>
</tr>
<tr>
<td>500.00V</td>
<td>0.04%+2c</td>
<td>0.05%+2c</td>
</tr>
<tr>
<td>1000.0V</td>
<td>0.05%+2c</td>
<td>0.1%+2c</td>
</tr>
</tbody>
</table>

NMRR: > 60dB @ 50/60Hz
CMRR: >120dB @ DC, 50/60Hz, Rs=1kΩ
Impedancja wej.: 10MO/30pF nominalnie (80pF nominalnie na zakresie 500mV)

Rezystancja Ω

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>BM859CF</th>
<th>BM857</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.00Ω</td>
<td>0.07%+10c</td>
<td></td>
</tr>
<tr>
<td>5.0000kΩ</td>
<td>0.07%+2c</td>
<td>0.1%+6c</td>
</tr>
<tr>
<td>50.00kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500.00kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0000MΩ</td>
<td>0.2%+6c</td>
<td>0.4%+6c</td>
</tr>
<tr>
<td>50.00MΩ</td>
<td>2.0%+6c</td>
<td>2.0%+6c</td>
</tr>
</tbody>
</table>

Napięcie otwartego obwodu < 1.3V DC
(< 3V DC na zakresie 500Ω)
Napięcie przemienne AC, AC+DC

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>BM859CF</th>
<th>BM857</th>
<th>Dokładność *</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.00mV, 5.0000V, 50.0000V</td>
<td>1.5% + 40c</td>
<td>Nieokreślona</td>
<td></td>
</tr>
<tr>
<td>500.00V, 1000V</td>
<td>Nieokreślona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45Hz...300Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500.00mV</td>
<td>0.3% + 20c</td>
<td>0.8% + 60c</td>
<td></td>
</tr>
<tr>
<td>5.0000V, 50.0000V</td>
<td>0.8% + 20c</td>
<td>0.8% + 60c</td>
<td></td>
</tr>
<tr>
<td>500.00V, 1000V</td>
<td>0.4% + 40c</td>
<td>2.0% + 60c</td>
<td></td>
</tr>
<tr>
<td>300Hz...5kHz</td>
<td>300Hz...1kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500.00mV</td>
<td>0.3% + 10c</td>
<td>0.8% + 40c</td>
<td></td>
</tr>
<tr>
<td>5.0000V, 50.0000V, 50.0000V</td>
<td>0.4% + 40c</td>
<td>2.0% + 60c</td>
<td></td>
</tr>
<tr>
<td>1000.0V</td>
<td>0.8% + 40c (300Hz...1kHz)</td>
<td>1.0% + 40c</td>
<td></td>
</tr>
<tr>
<td>5kHz...20kHz</td>
<td>1kHz...20kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500.00mV</td>
<td>0.5% + 20c</td>
<td>1dB **</td>
<td></td>
</tr>
<tr>
<td>5.0000V, 50.0000V</td>
<td>0.8% + 20c</td>
<td>2dB **</td>
<td></td>
</tr>
<tr>
<td>500.00V</td>
<td>0.5% + 20c</td>
<td>3dB **</td>
<td></td>
</tr>
<tr>
<td>1000.0V</td>
<td>Nieokreślona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20kHz...100kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500.00mV</td>
<td>2.0% + 40c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0000V, 50.0000V</td>
<td>4.0% + 40c **</td>
<td>Nieokreślona</td>
<td></td>
</tr>
<tr>
<td>500.00V</td>
<td>Nieokreślona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Od 5% do 10% zakresu:
dokładność % ww (lub w dB) + 80c

** Od 5% do 10% zakresu:
dokładność % ww (lub w dB) + 180c

Od 10% do 15% zakresu:
dokładność % ww (lub w dB) + 100c

CMRR: >90dB @ DC do 60Hz, Rs=1kΩ
Impedancja wej.: 10MΩ/30pF nominalnie (80pF nominalnie na zakresie 500mV)
Wartość odczytu po zwarcie przewodów pomiarowych mniejsza niż 50 cyfr.

Pojemność C

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>Dokładność *</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00nF</td>
<td>0.8% + 3c</td>
</tr>
<tr>
<td>500.00nF</td>
<td>1.0% + 3c</td>
</tr>
<tr>
<td>5.000μF</td>
<td>2.0% + 3c</td>
</tr>
<tr>
<td>50.00μF</td>
<td>3.5% + 5c</td>
</tr>
<tr>
<td>500.0μF</td>
<td>5.0% + 5c</td>
</tr>
<tr>
<td>9999μF</td>
<td>5.0% + 5c</td>
</tr>
</tbody>
</table>

* Dokładności dla kondensatora foliowego lub lepszego

Częstotliwość ~Hz

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>Dokładność</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00000Hz...200.000kHz</td>
<td>0.002% + 4c</td>
</tr>
</tbody>
</table>

Czulność (wartość RMS sinusoidy):
0.1V na zakresie 500mV
1V na zakresie 5V
10V na zakresie 50V
100V na zakresie 500V
900V na zakresie 1000V

Częstotl. przebiegów logicznych \[\text{Hz}\]

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>Dokładność</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00000Hz...200000MHz</td>
<td>0.002% + 4c</td>
</tr>
</tbody>
</table>

Czulność: 2.5Vp dla fali prostokątnej

Wypełnienie impulsów %

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>Dokładność</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%...99.99%</td>
<td>3c/kHz + 2c</td>
</tr>
</tbody>
</table>

Częstotliwość wejściowa:
5Hz...500kHz, sygnały TTL
Prąd stały DC A

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>Dokładność</th>
<th>Spadek napięcia</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.00μA</td>
<td>0.15% + 20c</td>
<td>0.15mV/μA</td>
</tr>
<tr>
<td>500.00μA</td>
<td>0.1% + 20c</td>
<td>0.15mV/μA</td>
</tr>
<tr>
<td>50.000mA</td>
<td>0.15% + 10c</td>
<td>3.3mV/mA</td>
</tr>
<tr>
<td>50.000mA</td>
<td>0.1% + 20c</td>
<td>3.3mV/mA</td>
</tr>
<tr>
<td>5.0000A</td>
<td>0.5% + 10c</td>
<td>0.03V/A</td>
</tr>
<tr>
<td>10.000A*</td>
<td>0.5% + 20c</td>
<td>0.03V/A</td>
</tr>
</tbody>
</table>

*10A ciągłego, 20A przez max 30s z 5 minutowymi przerwami na chłodzenie

Pętla prądowa %4-20mA
- 4mA = 0%
- 20mA = 100%
- Rodzicielność: 0.01%
- Dokładność: ±25c

Temperatura różnicowa T1-T2

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>Dokładność</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50.0°C...1000.0°C</td>
<td>0.3% + 1°C</td>
</tr>
<tr>
<td>-58.0°F...1832.0°F</td>
<td>0.3% + 2°F</td>
</tr>
</tbody>
</table>

Bez uwzględniania zakresu i dokładności tempory

Prąd przemienny AC, AC+DC

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>BM859CF</th>
<th>BM857</th>
<th>Spadek napięcia</th>
</tr>
</thead>
<tbody>
<tr>
<td>50Hz...60Hz</td>
<td></td>
<td></td>
<td>0.15mV/μA</td>
</tr>
<tr>
<td>500.00μA</td>
<td>0.5%</td>
<td></td>
<td>0.15mV/μA</td>
</tr>
<tr>
<td>500.00μA</td>
<td>+50c</td>
<td></td>
<td>3.3mV/mA</td>
</tr>
<tr>
<td>50.000mA</td>
<td>1.0%</td>
<td></td>
<td>3.3mV/mA</td>
</tr>
<tr>
<td>5.0000A</td>
<td>+40c</td>
<td></td>
<td>0.03V/A</td>
</tr>
<tr>
<td>10.000A*</td>
<td></td>
<td></td>
<td>0.03V/A</td>
</tr>
</tbody>
</table>

40Hz...1kHz			0.15mV/μA
500.00μA	0.7%		0.15mV/μA
500.00μA	+50c		3.3mV/mA
50.000mA	1.0%		3.3mV/mA
5.0000A	+40c		0.03V/A
10.000A*			0.03V/A

1kHz...10kHz			0.15mV/μA
500.00μA	2.0%	Nieokr.	0.15mV/μA
500.00μA	+50c	Nieokr.	0.15mV/μA
50.000mA	3.3mV/mA		
50.000mA	3.3mV/mA		
5.0000A	0.03V/A		
10.000A*	0.03V/A		

*10A ciągłego, 20A przez max 30s z 5 minutowymi przerwami na chłodzenie

Test diod

<table>
<thead>
<tr>
<th>ZAKRES</th>
<th>Dokładność</th>
<th>Prąd testu</th>
<th>Napięcie otwartego obwodu</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0000V</td>
<td>1% + 1c</td>
<td>0.8mA</td>
<td>< 3.5V DC</td>
</tr>
</tbody>
</table>

Test ciągłości obwodu

Sygnał dźwiękowy dla R < 20...200Ω
Czas odpowiedzi < 100μs

dBm

da 600Ω: -11.76dBm...54.25dBm,
Dokładność: ±0.25dB + 2c (40Hz...20kHz)
Impedancja wejściowa: 10MΩ/30pF
Wybór impedancji odniesienia: 4, 8, 16, 32, 50, 75, 93, 110, 125, 135, 150, 200, 250, 300, 500, 600, 800, 900, 1000, 1200Ω

Współczynnik szczytu (Crest)

Dokładność: dokładność danego zakresu ±100 cyfr dla impulsów o czasie trwania >0.8ms
OCHRONA ŚRODOWISKA

Urządzenie spełnia dyrektywę WEEE 2002/96/EC. Symbol obok oznacza, że produkt musi być utylizowany oddzielnie i powinien być dostarczany do odpowiedniego punktu zbierającego odpady. Nie należy go wyrzucać razem z odpadami gospodarstwa domowego. Aby uzyskać więcej informacji, należy skontaktować się z przedstawicielem przedsiębiorstwa lub lokalnymi władzami odpowiedzialnymi za zarządzanie odpadami.

BM857 nr ind.: 102020
MULTIMETR CYFROWY TRMS
Wyprodukowano na Tajwanie
Importer: BIALL Sp. z o.o.
Otomin, ul. Słoneczna 43
80-174 GDANSK
www.biall.com.pl

BM859CF nr ind.: 102019
MULTIMETR CYFROWY TRMS
Wyprodukowano na Tajwanie
Importer: BIALL Sp. z o.o.
Otomin, ul. Słoneczna 43
80-174 GDANSK
www.biall.com.pl

BRYMEN
BRIGHT PEOPLE’S CHOICE

BRYMEN TECHNOLOGY CORPORATION

 Printed on recyclable paper, please recycle
Copyright © MM B.T.C., all rights reserved
P/N: 7M1C-0191-0000 Printed in Poland

http://www.biall.com.pl